Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 219
Filtrar
1.
Int J Biol Macromol ; 266(Pt 2): 131068, 2024 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-38531526

RESUMEN

An extensive range of new biologically active morpholine based thiosemicarbazones derivatives 3a-r were synthesized, characterized by spectral techniques and evaluated as inhibitors of ENPP isozymes. Most of the novel thiosemicarbazones exhibit potent inhibition towards NPP1 and NPP3 isozymes. Compound 3 h was potent inhibitor of NPP1 with IC50 value of 0.55 ±â€¯0.02. However, the most powerful inhibitor of NPP3 was 3e with an IC50 value of 0.24 ±â€¯0.02. Furthermore, Lineweaver-Burk plot for compound 3 h against NPP1 and for compound 3e against NPP3 was devised through enzymes kinetics studies. Molecular docking and in silico studies was also done for analysis of interaction pattern of all newly synthesized compounds. The results were further validated by molecular dynamic (MD) simulation where the stability of conformational transformation of the best protein-ligand complex (3e) were justified on the basis of RMSD and RMSF analysis.

2.
Spectrochim Acta A Mol Biomol Spectrosc ; 313: 124117, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38461559

RESUMEN

Cancer's global impact necessitates innovative and less toxic treatments. Thiosemicarbazones (TSCs), adaptable metal chelators, offer such potential. In this study, we have synthesized N (4)-substituted heterocyclic TSCs from syringaldehyde (TSL1, TSL2), and also report the unexpected copper-mediated cyclization of the TSCs to form thiadiazoles (TSL3, TSL4), expanding research avenues. This work includes extensive characterization and studies such as DNA/protein binding, molecular docking, and theoretical analyses to demonstrate the potential of the as-prepared TSCs and thiadiazoles against different cancer cells. The DFT results depict that the thiadiazoles exhibit greater structural stability and reduced reactivity compared to the corresponding TSCs. The docking results suggest superior EGFR inhibition for TSL3 with a binding constant value of - 6.99 Kcal/mol. According to molecular dynamics studies, the TSL3-EGFR complex exhibits a lower average RMSD (1.39 nm) as compared to the TSL1-EGFR complex (3.29 nm) suggesting that both the thiadiazole and thiosemicarbazone examined here can be good inhibitors of EGFR protein, also that TSL3 can inhibit EGFR better than TSL1. ADME analysis indicates drug-likeness and oral availability of the thiadiazole-based drugs. The DNA binding experiment through absorption and emission spectroscopy discovered that TSL3 is more active towards DNA which is quantitatively calculated with a Kb value of 4.74 × 106 M-1, Kq value of 4.04 × 104 M-1and Kapp value of 5 × 106 M-1. Furthermore, the BSA binding studies carried out with fluorescence spectroscopy showed that TSL3 shows better binding capacity (1.64 × 105 M-1) with BSA protein. All the compounds show significant cytotoxicity against A459-lung, MCF-7-breast, and HepG2-liver cancer cell lines; TSL3 exhibits the best cytotoxicity, albeit less effective than cisplatin. Thiadiazoles demonstrate greater cytotoxicity than the TSCs. Overall, the promise of TSCs and thiadiazoles in cancer research is highlighted by this study. Furthermore, it unveils unexpected copper-mediated cyclization of the TSCs to thiadiazoles.


Asunto(s)
Antineoplásicos , Tiadiazoles , Tiosemicarbazonas , Simulación del Acoplamiento Molecular , Teoría Funcional de la Densidad , Cobre/farmacología , Cobre/química , Tiosemicarbazonas/farmacología , Tiosemicarbazonas/química , Ciclización , Tiadiazoles/farmacología , Tiadiazoles/química , Espectrometría de Fluorescencia , ADN/química , Receptores ErbB/metabolismo , Antineoplásicos/farmacología , Antineoplásicos/química
3.
Artículo en Inglés | MEDLINE | ID: mdl-38367264

RESUMEN

INTRODUCTION: Carbonic anhydrases (CAs) are widespread metalloenzymes with the core function of catalyzing the interconversion of CO2 and HCO3-. Targeting these enzymes using selective inhibitors has emerged as a promising approach for the development of novel therapeutic agents against multiple diseases. METHOD: A series of novel thiosemicarbazones-containing derivatives were synthesized, characterized, and tested for their inhibitory activity against pharmaceutically important human CA I (hCA I), II (hCA II), IX (hCA IX), and XII (hCA XII) using the single tail approach. RESULT: The compounds generally inhibited the isoenzymes at low nanomolar concentrations, with compound 6b having Ki values of 7.16, 0.31, 92.5, and 375 nM against hCA I, II, IX and XII, respectively. Compound 6e exhibited Ki values of 27.6, 0.34, 872, and 94.5 nM against hCA I, II, IX and XII, respectively. CONCLUSION: To rationalize the inhibition data, molecular docking studies were conducted, providing insight into the binding mechanisms, molecular interactions, and selectivity of the compounds towards the isoenzymes.

4.
Biology (Basel) ; 13(1)2024 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-38275736

RESUMEN

Four 1,10-phenanthroline derivatives (1-4) were synthesized as potential telomeric DNA binders, three substituted in their chains with thiosemicarbazones (TSCs) and one 4-phenylthiazole derivative. The compounds were characterized using NMR, HRMS, FTIR-spectroscopy and combustion elemental analysis. Quadruplex and dsDNA interactions were preliminarily studied, especially for neutral derivative 1, using FRET-based DNA melting assays, equilibrium dialysis (both competitive and non-competitive), circular dichroism and viscosity titrations. The TSC derivatives bind and stabilize the telomeric Tel22 quadruplex more efficiently than dsDNA, with an estimated 24-fold selectivity determined through equilibrium dialysis for compound 1. In addition, cytotoxic activity against various tumor cells (PC-3, DU145, HeLa, MCF-7 and HT29) and two normal cell lines (HFF-1 and RWPE-1) was evaluated. Except for the 4-phenylthiazole derivative, which was inactive, the compounds showed moderate cytotoxic properties, with the salts displaying lower IC50 values (30-80 µM), compared to the neutral TSC, except in PC-3 cells (IC50 (1) = 18 µM). However, the neutral derivative was the only compound that exhibited a modest selectivity in the case of prostate cells (tumor PC-3 versus healthy RWPE-1). Cell cycle analysis and Annexin V/PI assays revealed that the compounds can produce cell death by apoptosis, an effect that has proven to be similar to that demonstrated by other known 1,10-phenanthroline G4 ligands endowed with antitumor properties, such as PhenDC3 and PhenQE8.

5.
Int Immunopharmacol ; 126: 111259, 2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-37992446

RESUMEN

Multiple studies in the literature have demonstrated that synthetic compounds containing heterocyclic rings possess a reparative potential against acute and chronic inflammation. In the present study, two novel thiosemicarbazone derivatives based on l-ethyl-6-(thiophen-2-yl)indoline-2,3-dione with different phenyl substituted thiosemicarbazides were synthesized by condensation reaction and the structures of proposed target compounds (KP-2 and KP-5) were confirmed by UV-VIS, FTIR, 1H-NMR and 13C-NMR. In-vitro anti-inflammatory behavior of KP-2 and KP-5 was confirmed by bovine serum albumin (BSA) and ovine serum albumin (OSA) analysis. Acute and chronic anti-inflammatory potential of synthesized compounds were evaluated by using carrageenan and complete Freund's adjuvant (CFA) as inflammation-inducing agents, respectively. Inhibition of pro-inflammatory mediators and prevention of protein denaturation owing to synchronization of more electronegative flouro-groups substituted on phenyl rings along with heterocyclic indoline ring provides anti-inflammatory effects and are corroborated by radiological, histopathological analysis. Additional support was provided through density functional theory (DFT) and molecular docking. KP-5 exhibited excellent lead-likeness based on its physicochemical parameters, making it a viable drug candidate. The synthesized compounds also showed promising ADMET properties, enhancing their potential as therapeutic agents. These findings emphasize the pivotal role of new compounds for drug design and development.


Asunto(s)
Tiosemicarbazonas , Animales , Ovinos , Humanos , Simulación del Acoplamiento Molecular , Relación Estructura-Actividad , Tiosemicarbazonas/farmacología , Tiosemicarbazonas/uso terapéutico , Antiinflamatorios/uso terapéutico , Inflamación/tratamiento farmacológico , Carragenina , Estructura Molecular , Edema/inducido químicamente , Edema/tratamiento farmacológico , Inhibidores de la Ciclooxigenasa 2/farmacología
6.
Pharmacol Rep ; 75(6): 1588-1596, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37796435

RESUMEN

BACKGROUND: Multifunctional thiosemicarbazones (TSCs) able to bind sigma receptors and chelate metals are considered as a promising avenue for the treatment of pancreatic cancer due to the encouraging results obtained on in vitro and in vivo models. Here, we assessed the biochemical mechanism of these TSCs also on lung (A549) and breast (MCF7) cancer cells. METHODS: The density of sigma-2 receptors in normal (BEAS-2B and MCF10A) and in lung and breast (A549 and MCF7) cancer cells was evaluated by flow cytometry. In these cells, cytotoxicity (MTT assay) and activation of ER- and mitochondria-dependent cell death pathways (by spectrofluorimetric assays to measure Caspases 3/7/9; qRT-PCR detection of GRP78, ATF6, IRE1, PERK; MitoSOX, DCFDA-AM and JC-1 staining), induced by the TSCs FA4, MLP44, PS3 and ACThio1, were evaluated. RESULTS: FA4 and PS3 exerted more potent cytotoxicity than MLP44 and ACThio1 in all cancer cell lines, where the density of sigma-2 receptors was higher than in normal cells. Remarkably, FA4 promoted ER- and mitochondria-dependent cell death pathways in both cell models, whereas the other TSCs had variable, cell-dependent effects on the activation of the two proapoptotic pathways. CONCLUSIONS: Our data suggest that FA4 is a promising compound that deserves to be further studied for lung and breast cancer treatment. However, the other multifunctional TSCs also hold promise for the development of therapies towards a personalized medicine approach. Indeed, the presence of the sigma-2 receptor-targeting moiety would lead to a more specific tumor delivery embracing the characteristics of individual tumor types.


Asunto(s)
Antineoplásicos , Carcinoma , Neoplasias Pulmonares , Receptores sigma , Tiosemicarbazonas , Humanos , Receptores sigma/metabolismo , Apoptosis , Tiosemicarbazonas/farmacología , Antineoplásicos/uso terapéutico , Neoplasias Pulmonares/tratamiento farmacológico , Pulmón/metabolismo , Línea Celular Tumoral
7.
Chem Biodivers ; 20(11): e202301063, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37769192

RESUMEN

Eleven new thiosemicarbazone derivatives (1-11) were designed from nine different biologically and pharmacologically important isothiocyanate derivatives containing functional groups such as fluorine, chlorine, methoxy, methyl, and nitro at various positions of the phenyl ring, in addition to the benzyl unit in the molecular skeletal structure. First, their substituted-thiosemicarbazide derivatives were synthesized from the treatment of isothiocyanate with hydrazine to synthesize the designed compounds. Through a one-step easy synthesis and an eco-friendly process, the designed compounds were synthesized with yields of up to 95 % from the treatment of the thiosemicarbazides with aldehyde derivatives having methoxy and hydroxy groups. The structures of the synthesized molecules were elucidated with elemental analysis and FT-IR, 1 H-NMR, and 13 C-NMR spectroscopic methods. The electronic and spectroscopic properties of the compounds were determined by the DFT calculations performed at the B3LYP/6-311++G(2d,2p) level of theory, and the experimental findings were supported. The effects of some global reactivity parameters and nucleophilic-electrophilic attack abilities of the compounds on the enzyme inhibition properties were also investigated. They exhibited a highly potent inhibition effect on acetylcholinesterase (AChE) and carbonic anhydrases (hCAs) (KI values are in the range of 23.54±4.34 to 185.90±26.16 nM, 103.90±23.49 to 325.90±77.99 nM, and 86.15±18.58 to 287.70±43.09 nM for AChE, hCA I, and hCA II, respectively). Furthermore, molecular docking simulations were performed to explain each enzyme-ligand complex's interaction.


Asunto(s)
Tiosemicarbazonas , Tiosemicarbazonas/química , Relación Estructura-Actividad , Simulación del Acoplamiento Molecular , Inhibidores de la Colinesterasa/química , Inhibidores de Anhidrasa Carbónica/farmacología , Inhibidores de Anhidrasa Carbónica/química , Acetilcolinesterasa/metabolismo , Espectroscopía Infrarroja por Transformada de Fourier , Anhidrasa Carbónica I , Inhibidores Enzimáticos/química , Estructura Molecular , Isotiocianatos
8.
Metallomics ; 15(8)2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37505477

RESUMEN

Thiosemicarbazones (TSCs) are a class of biologically active compounds with promising anticancer activity. Their typical mechanism, especially of the clinically far developed representative Triapine, is chelation of iron (Fe), with the Fe-containing enzyme ribonucleotide reductase as primary intracellular target. However, for the subclass of terminally disubstituted, nanomolar-active derivatives like Dp44mT and Me2NNMe2, recent findings suggest that the chelation, stability, and reduction properties of the copper(II) (Cu) complexes are essential for their modes of action. Consequently, it is important to elucidate whether blood serum Cu(II) is a potential metal source for these TSCs. To gain more insights, the interaction of Triapine, Dp44mT or Me2NNMe2 with purified human serum albumin (HSA) as the main pool of labile Cu(II) was investigated by UV-vis and electron paramagnetic resonance measurements. Subsequently, a size-exclusion chromatography inductively coupled plasma mass spectrometry method for the differentiation of Cu species in serum was developed, especially separating the non-labile Cu enzyme ceruloplasmin from HSA. The results indicate that the TSCs specifically chelate copper from the N-terminal Cu-binding site of HSA. Furthermore, the Cu(II)-TSC complexes were shown to form ternary HSA conjugates, most likely via histidine. Noteworthy, Fe-chelation from transferrin was not overserved, even not for Triapine. In summary, the labile Cu pool of HSA is a potential source for Cu-TSC complex formation and, consequently, distinctly influences the anticancer activity and pharmacological behavior of TSCs.


Asunto(s)
Antineoplásicos , Tiosemicarbazonas , Humanos , Albúmina Sérica Humana , Cobre/química , Tiosemicarbazonas/farmacología , Tiosemicarbazonas/química , Quelantes/química , Antineoplásicos/farmacología , Antineoplásicos/química
9.
Bioorg Chem ; 139: 106739, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37478545

RESUMEN

Type-2 Diabetes Mellitus (T2DM) is one of the most common metabolic disorders in the world and over the past three decades its incidence has increased drastically. α-Glucosidase inhibitors are used to control the hyperglycemic affect of T2DM. Herein, we report the synthesis, α-glucosidase inhibition, structure activity relationship, pharmacokinetics and docking analysis of various novel chromone based thiosemicarbazones 3(a-r). The derivatives displayed potent activity against α-glucosidase with IC50 in range of 0.11 ± 0.01-79.37 ± 0.71 µM. Among all the synthesized compounds, 3a (IC50 = 0.17 ± 0.026 µM), 3 g (IC50 = 0.11 ± 0.01 µM), 3n (IC50 = 0.55 ± 0.02 µM), and 3p (IC50 = 0.43 ± 0.025 µM) displayed higher inhibitory activity as compared to the standard, acarbose. Moreover, we have developed a statistically significant 2D-QSAR model (R2tr:0.9693; F: 50.4647 and Q2LOO:0.9190), which can be used in future to further design potent thiosemicarbazones as inhibitors of α-glucosidase.


Asunto(s)
Diabetes Mellitus Tipo 2 , Tiosemicarbazonas , Humanos , Inhibidores de Glicósido Hidrolasas/química , Tiosemicarbazonas/farmacología , alfa-Glucosidasas/metabolismo , Simulación del Acoplamiento Molecular , Relación Estructura-Actividad , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Estructura Molecular
10.
Heliyon ; 9(6): e16222, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37292281

RESUMEN

The thiosemicarbazones and their derivatives have been recognized as antimicrobial agents against human pathogenic bacteria and fungi. Regarding these prospective, this study was designed to address the new antimicrobial agents from thiosemicarbazones and their derivatives. These derivatives were synthesized by multi-step synthesis methods, such as alkylation, acidification, esterification, and formed the 4-(4'-alkoxybenzoyloxy) thiosemicarbazones and its derivatives (THS1, THS2, THS3, THS4, and THS5). Afterward the synthesis, compounds were characterized by 1H NMR, FTIR spectra, and melting point. Later, the computational tools were applied to evaluate the drug likeness properties, bioavailability score, Lipinski rule, absorption, distribution, metabolism, excretion, and toxicity (ADMET). Secondly, the quantum calculations, for instance HOMO, LUMO and chemical descriptors, were calculated by the density functional theory (DFT). Finally, the molecular docking was performed against seven human pathogenic bacteria, black fungus (Rhizomucor mieh, Mucor lusitanicus, Mycolicibacterium smegmatis) and white fungus strains (Candida Auris, Aspergillus luchuensis, Candida albicans). To check and validate of molecular docking procedure and stability of docked complex for ligand and protein, the molecular dynamic was performed of docked complex. From the docking score with calculating the binding affinity, these derivatives could show a higher affinity than standard drug against all pathogens. From the computational details, it could be decided to do in-vitro test as antimicrobial activity against Staphylococcus aurious, Staphylococcus homonis, Salmonella typhi, and Shigella flexneria. The obtained result of antibacterial activity compared to standard drugs, and it was found that the synthesized compounds were almost same value of standard drug. Finally, it could be said from the in-vitro and in-silico study that the thiosemicarbazones derivatives are good antimicrobial agents.

11.
J Enzyme Inhib Med Chem ; 38(1): 2193676, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37146256

RESUMEN

The development of skin-care products is recently growing. Cosmetic formulas containing active ingredients with proven efficacy, namely cosmeceuticals, are based on various compounds, including peptides. Different whitening agents featuring anti-tyrosinase activity have been applied in the cosmeceutical field. Despite their availability, their applicability is often limited due to several drawbacks including toxicity, lack of stability, and other factors. In this work, we present the inhibitory effect on diphenolase activity of thiosemicarbazone (TSC)-peptide conjugates. Tripeptides FFY, FWY, and FYY were conjugated with three TSCs bearing one or two aromatic rings via amide bond formation in a solid phase. Compounds were then examined as tyrosinase and melanogenesis inhibitors in murine melanoma B16F0 cell line, followed by the cytotoxicity assays of these cells. In silico investigations explained the differences in the activity, observed among tested compounds. Mushroom tyrosinase was inhibited by TSC1-conjugates at micromolar level, with IC50 lower than this for kojic acid, a widely used reference compound. Up to now, this is the first report regarding thiosemicarbazones conjugated with tripeptides, synthesised for the purpose of tyrosinase inhibition.


Asunto(s)
Agaricales , Cosmecéuticos , Tiosemicarbazonas , Animales , Ratones , Monofenol Monooxigenasa , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/química , Tiosemicarbazonas/farmacología , Tiosemicarbazonas/química , Melaninas
12.
Pharmacol Res ; 193: 106806, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37244387

RESUMEN

The estrogen receptor-α (ER-α) is a key driver of breast cancer (BC) and the ER-antagonist, tamoxifen, is a central pillar of BC treatment. However, cross-talk between ER-α, other hormone and growth factor receptors enables development of de novo resistance to tamoxifen. Herein, we mechanistically dissect the activity of a new class of anti-cancer agents that inhibit multiple growth factor receptors and down-stream signaling for the treatment of ER-positive BC. Using RNA sequencing and comprehensive protein expression analysis, we examined the activity of di-2-pyridylketone-4,4-dimethyl-3-thiosemicarbazone (Dp44mT) and di-2-pyridylketone-4-cyclohexyl-4-methyl-3-thiosemicarbazone (DpC), on the expression and activation of hormone and growth factor receptors, co-factors, and key resistance pathways in ER-α-positive BC. DpC differentially regulated 106 estrogen-response genes, and this was linked to decreased mRNA levels of 4 central hormone receptors involved in BC pathogenesis, namely ER, progesterone receptor (PR), androgen receptor (AR), and prolactin receptor (PRL-R). Mechanistic investigation demonstrated that due to DpC and Dp44mT binding metal ions, these agents caused a pronounced decrease in ER-α, AR, PR, and PRL-R protein expression. DpC and Dp44mT also inhibited activation and down-stream signaling of the epidermal growth factor (EGF) family receptors, and expression of co-factors that promote ER-α transcriptional activity, including SRC3, NF-κB p65, and SP1. In vivo, DpC was highly tolerable and effectively inhibited ER-α-positive BC growth. Through bespoke, non-hormonal, multi-modal mechanisms, Dp44mT and DpC decrease the expression of PR, AR, PRL-R, and tyrosine kinases that act with ER-α to promote BC, constituting an innovative therapeutic approach.


Asunto(s)
Neoplasias de la Mama , Tiosemicarbazonas , Humanos , Femenino , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/metabolismo , Progesterona/uso terapéutico , Andrógenos/uso terapéutico , Receptores de Prolactina , Prolactina/uso terapéutico , Tamoxifeno/farmacología , Tiosemicarbazonas/farmacología , Tiosemicarbazonas/uso terapéutico , Receptores ErbB , Estrógenos/uso terapéutico
13.
Chempluschem ; 88(12): e202300115, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37191319

RESUMEN

This work describes the synthesis of four gold(I) [AuClL] compounds containing chloro and biologically active protonated thiosemicarbazones based on 5-nitrofuryl (L=HSTC). The stability of the compounds in dichloromethane, DMSO, and DMSO/culture media solutions was investigated by spectroscopy, cyclic voltammetry, and conductimetry, indicating the formation overtime of cationic monometallic [Au(HTSC)(DMSO)]± or [Au(HTSC)2 ]± , and/or dimeric species. Neutral [{Au(TSC)}2 ] species were obtained from one of the compounds in dichlomethane/n-hexane solution and characterized by X-ray crystallography revealing a Au-Au bond, and deprotonated thiosemicarbazone (TSC). The cytotoxicity of the gold compounds and thiosemicarbazone ligands was evaluated against selected cancer cell lines and compared to that of Auranofin. Studies of the most stable, cytotoxic, and selective compound on a renal cancer cell line (Caki-1) demonstrated its relevant antimigratory and anti-angiogenic properties, and preferential accumulation in the cell nuclei. Its mode of action seems to involve interaction with DNA, and subsequent cell death via apoptosis.


Asunto(s)
Antineoplásicos , Tiosemicarbazonas , Oro , Línea Celular Tumoral , Dimetilsulfóxido , Tiosemicarbazonas/farmacología , Tiosemicarbazonas/química
14.
Drug Dev Res ; 84(5): 962-974, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37186392

RESUMEN

Inhibiting α-glucosidase is a reliable method for reducing blood sugar levels in diabetic individuals. Several novel chromen-linked hydrazine carbothioamide (3a-r) were designed and synthesized by condensation of chromone-3-carbaldehyde with a variety of substituted thiosemicarbazides. The structures of these new analogues were elucidated through various advanced spectroscopic techniques (1 H NMR, 13 C NMR, and ESI-MS). The resulted compounds were screened for α-glucosidase inhibitory potential and all the compounds (3a-r) exhibited potent inhibition of α-glucosidase with IC50 values ranging 0.29-53.70 µM. Among them compounds 3c, 3f, 3h, and 3r displayed the highest α-glucosidase inhibitor capability with IC50 values of 1.50, 1.28, 1.08, and 0.29 µM, respectively. Structure-activity relationship showed that different substituted groups are responsible for the variation in the α-glucosidase inhibition. The kinetics studies of the most active inhibitor (3r) were performed, to investigate the mode of inhibition and dissociation constants (Ki), that indicated a competitive inhibitor with Ki value of 1.47 ± 0.31 µM. Furthermore, molecular docking studies was performed to reveal the possible interactions, such as H-bonding, or π-π stacking, with the key residues of α-glucosidase. Docking analysis revealed the importance of hydrazine carbothioamide moiety of compounds in the attachment of ligands with the crucial residues of α-glucosidase. The estimated pharmacokinetic, physicochemical, and drug likeness properties of compounds 3a-r reflects that these molecules have acceptable range of these properties.


Asunto(s)
Inhibidores de Glicósido Hidrolasas , alfa-Glucosidasas , Humanos , Inhibidores de Glicósido Hidrolasas/farmacología , Inhibidores de Glicósido Hidrolasas/química , Simulación del Acoplamiento Molecular , Estructura Molecular , alfa-Glucosidasas/química , alfa-Glucosidasas/metabolismo , Relación Estructura-Actividad , Hidrazinas/farmacología
15.
Arch Pharm (Weinheim) ; 356(8): e2300207, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37255416

RESUMEN

COVID-19 has caused many deaths since the first outbreak in 2019. The burden on healthcare systems around the world has been reduced by the success of vaccines. However, population adherence and the occurrence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants are still challenging tasks to be affronted. In addition, the newly approved drug presents some limitations in terms of side effects and drug interference, highlighting the importance of searching for new antiviral agents against SARS-CoV-2. The SARS-CoV-2 main protease (Mpr o ) represents a versatile target to search for new drug candidates due to its essential role in proteolytic activities responsible for the virus replication. In this work, a series of 190 compounds, composed of 27 natural ones and 163 synthetic compounds, were screened in vitro for their inhibitory effects against SARS-CoV-2 Mpro . Twenty-five compounds inhibited Mpro with inhibitory constant values (Ki ) between 23.2 and 241 µM. Among them, a thiosemicarbazone derivative was the most active compound. Molecular docking studies using Protein Data Bank ID 5RG1, 5RG2, and 5RG3 crystal structures of Mpro revealed important interactions identified as hydrophobic, hydrogen bonding and steric interactions with amino acid residues in the active site cavity. Overall, our findings indicate the described thiosemicarbazones as good candidates to be further explored to develop antiviral leads against SARS-CoV-2. Moreover, the studies showed the importance of careful evaluation of test results to detect and exclude false-positive findings.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Simulación del Acoplamiento Molecular , Inhibidores de Proteasas/farmacología , Inhibidores de Proteasas/química , Relación Estructura-Actividad , Antivirales/farmacología , Antivirales/química , Simulación de Dinámica Molecular
16.
Eur J Med Chem ; 254: 115345, 2023 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-37054562

RESUMEN

Based on the activity of 23 TSCs on CZ taken from the literature, we have developed a QSAR model for predicting the activity of TSCs. New TSCs were designed and then tested against CZP, resulting in inhibitors with IC50 values in the nanomolar range. The modelling of the corresponding TSC-CZ complexes by molecular docking and QM/QM ONIOM refinement indicates a binding mode compatible with what was expected for active TSCs, according to a geometry-based theoretical model previously developed by our research group. Kinetic experiments on CZP suggest that the new TSCs act by a mechanism that involves the formation of a reversible covalent adduct with slow association and dissociation kinetics. These results demonstrate the strong inhibitory effect of the new TSCs and the benefit of the combined use of QSAR and molecular modelling techniques in the design of new and potent CZ/CZP inhibitors.


Asunto(s)
Tiosemicarbazonas , Tiosemicarbazonas/química , Simulación del Acoplamiento Molecular , Cisteína Endopeptidasas , Proteínas Protozoarias
17.
Carbohydr Res ; 526: 108796, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36944301

RESUMEN

The one-pot synthetic method of condensation of isatin and 5-chloroisatin on to amino group at C2 position of the pyranose ring chitosan in chitosan thiosemicarbazide was employed to get these chitosan thiosemicarbazones (TSCs). The partial incorporation of thiosemicarbazone moiety in chitosan was shown by FT-IR and 13C NMR spectroscopic studies, powder X ray diffraction, and CHNS microanalysis. The NOS tridentate coordination behavior of TSCs with copper(II) chloride to give the square planar complexes was established by FT-IR spectroscopic data, magnetic susceptibility measurement, and EPR spectral analysis. The thermal stability of these biomaterial chitosan derivatives till the commencement of chain disruption at 200C was shown by thermal studies. As revealed by colorimetric MTT assays, the in vitro anticancer activity enhancement accorded with the functionalization of chitosan as isatin based chitosan TSCs, and NOS tridentate coordination of TSCs plus a monodentate coordination of chloride ion with copper(II) ion. Only a marginal activity difference of these compounds was observed against the tumorigenic MDCK and MCF-7 cancer cell lines, irrespective of unit molecular weight (Mw) and degree of deacetylation (DDA) of ring chitosan. The 5-chloroisatin chitosan TSCs showed better activity than isatin chitosan TSCs against both the cell lines.


Asunto(s)
Antineoplásicos , Quitosano , Complejos de Coordinación , Isatina , Tiosemicarbazonas , Cobre/farmacología , Cobre/química , Quitosano/farmacología , Isatina/farmacología , Espectroscopía Infrarroja por Transformada de Fourier , Tiosemicarbazonas/farmacología , Tiosemicarbazonas/química , Complejos de Coordinación/química , Antineoplásicos/farmacología , Antineoplásicos/química
18.
Exp Parasitol ; 248: 108498, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36907541

RESUMEN

In this work, 13 thiosemicarbazones (1a - m) and 16 thiazoles (2a - p) were obtained, which were properly characterized by spectroscopic and spectrometric techniques. The pharmacokinetic properties obtained in silico revealed that the derivatives are in accordance with the parameters established by lipinski and veber, showing that such compounds have good bioavailability or permeability when administered orally. In assays of antioxidant activity, thiosemicarbazones showed moderate to high antioxidant potential when compared to thiazoles. In addition, they were able to interact with albumin and DNA. Screening assays to assess the toxicity of compounds to mammalian cells revealed that thiosemicarbazones were less toxic when compared to thiazoles. In relation to in vitro antiparasitic activity, thiosemicarbazones and thiazoles showed cytotoxic potential against the parasites Leishmania amazonensis and Trypanosoma cruzi. Among the compounds, 1b, 1j and 2l stood out, showing inhibition potential for the amastigote forms of the two parasites. As for the in vitro antimalarial activity, thiosemicarbazones did not inhibit Plasmodium falciparum growth. In contrast, thiazoles promoted growth inhibition. This study shows in a preliminary way that the synthesized compounds have antiparasitic potential in vitro.


Asunto(s)
Tiosemicarbazonas , Trypanosoma cruzi , Animales , Antioxidantes/farmacología , Antiparasitarios/toxicidad , Relación Estructura-Actividad , Tiazoles/farmacología , Tiazoles/química , Tiosemicarbazonas/farmacología , Tiosemicarbazonas/química , Mamíferos
19.
Molecules ; 28(4)2023 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-36838796

RESUMEN

This review focuses on some interesting and recent applications of transition metals towards the complexation of thiosemicarbazides, thiocarbohydrazides, and their corresponding carbazones. We started the review with a description of the chosen five metals, including Cu[Cu(I), Cu(II], Co(II), Ni(II), Pd(II), and Ag(I) and their electronic configurations. The stability of the assigned complexes was also discussed. We shed light on different routes describing the synthesis of these ligands. We also reported on different examples of the synthesis of Cu(I), Cu(II), Co(II), Ni(II), Ag(I), and Pd(II) of thiosemicarbazide and thiocarbohydrazide complexes (until 2022). This review also deals with a summary of the fruitful use of metal complexes of thiosemicarbazones and thiocarbazones ligands in the field of catalysis. Finally, this recent review focuses on the applications of these complexes related to their biological importance.


Asunto(s)
Complejos de Coordinación , Elementos de Transición , Ligandos , Hidrazinas , Cobre
20.
Arch Pharm (Weinheim) ; 356(4): e2200554, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36575148

RESUMEN

New Schiff base-bearing thiosemicarbazones (1-13) were obtained from 4-hydroxy-3,5-dimethoxy benzaldehyde and various isocyanates. The structures of the synthesized molecules were elucidated in detail. Density functional theory calculations were also performed to determine the spectroscopic properties of the compounds. Moreover, the enzyme inhibition activities of these compounds were investigated. They showed highly potent inhibition effects on acetylcholinesterase (AChE) and human carbonic anhydrases (hCAs) (KI values are in the range of 51.11 ± 6.01 to 278.10 ± 40.55 nM, 60.32 ± 9.78 to 300.00 ± 77.41 nM, and 64.21 ± 9.99 to 307.70 ± 61.35 nM for AChE, hCA I, and hCA II, respectively). In addition, molecular docking studies were performed, confirmed by binding affinities studies of the most potent derivatives.


Asunto(s)
Tiosemicarbazonas , Humanos , Estructura Molecular , Simulación del Acoplamiento Molecular , Relación Estructura-Actividad , Tiosemicarbazonas/farmacología , Acetilcolinesterasa/metabolismo , Inhibidores de la Colinesterasa/farmacología , Inhibidores de Anhidrasa Carbónica/farmacología , Inhibidores de Anhidrasa Carbónica/química , Anhidrasa Carbónica I , Benzaldehídos/farmacología , Teoría Funcional de la Densidad , Anhidrasa Carbónica II
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...